Existence of Piecewise Continuous Mild Solutions for Impulsive Functional Differential Equations with Iterated Deviating Arguments
نویسندگان
چکیده
The objective of this article is to prove the existence of piecewise continuous mild solutions to impulsive functional differential equation with iterated deviating arguments in a Banach space. The results are obtained by using the theory of analytic semigroups and fixed point theorems.
منابع مشابه
Mild Solutions for Non-autonomous Impulsive Semi-linear Differential Equations with Iterated Deviating Arguments
In this work, we consider an impulsive non-autonomous semilinear equation with iterated deviating arguments in a Banach space. We establish the existence and uniqueness of a mild solution. Also we present an example that illustrates our main result.
متن کاملImpulsive integrodifferential Equations and Measure of noncompactness
This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.
متن کاملForced Oscillation of Neutral Impulsive Parabolic Partial Differential Equations with Continuous Distributed Deviating Arguments
This paper investigated oscillatory properties of solutions for nonlinear parabolic equations with impulsive effects under two different boundary conditions. By using integral averaging method, variable substitution and functional differential inequalities, we established several sufficient conditions. At last, we provided two examples to illustrate the results.
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013